By Topic

Urban Area Detection Using Local Feature Points and Spatial Voting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Beril Sirmacek ; Computer Vision Research Laboratory, Department of Electrical and Electronics Engineering , Yeditepe University, Istanbul, Turkey ; Cem Unsalan

Automatically detecting and monitoring urban regions is an important problem in remote sensing. Very high resolution aerial and satellite images provide valuable information to solve this problem. However, they are not sufficient alone for two main reasons. First, a human expert should analyze these very large images. There may be some errors in the operation. Second, the urban area is dynamic. Therefore, detection should be done periodically, and this is time consuming. To handle these shortcomings, an automated system is needed to detect the urban area from aerial and satellite images. In this letter, we propose such a method based on local feature point extraction using Gabor filters. We use these local feature points to vote for the candidate urban areas. Then, we detect the urban area using an optimal decision-making approach on the vote distribution. We test our method on a diverse panchromatic aerial and Ikonos satellite image set. Our test results indicate the possible use of our method in practical applications.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:7 ,  Issue: 1 )