Cart (Loading....) | Create Account
Close category search window
 

Modal characteristics of terahertz surface-emitting distributed-feedback lasers with a second-order concentric-circular metal grating

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Li, X.F. ; School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore ; Yu, S.F.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3211295 

A theoretical model is developed to study the modal characteristics of a second-order concentric-circular metal grating surface-emitting distributed-feedback (DFB) laser operating at terahertz regime. A series of high-order diffracted fields, which can be expressed as a Floquet–Bloch expansion of Hankel functions, is assumed to be generated from the concentric-circular metal grating. The resonant frequencies and transverse profiles of all the diffracted fields can be deduced from the related eigenequations established through the boundary conditions of the interfaces of the metal-dielectric-metal waveguide. The results show that the interference of the diffracted cylindrical waves can form two types of resonant modes, namely, quasisymmetric and quasiantisymmetric modes. Surface radiation is excited mainly by the influence of quasisymmetric modes, which exhibit constructive interference with the grating geometry. Furthermore, the resultant intensities of the diffracted waves decay exponentially from the center of the circular grating, indicating that the proposed grating geometry has the potential to realize surface terahertz radiation with excellent beam quality. The influence of grating duty cycle on the resonant conditions and transverse distributions of the diffracted fields are also investigated.

Published in:

Journal of Applied Physics  (Volume:106 ,  Issue: 5 )

Date of Publication:

Sep 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.