Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Delay-dependent stability analysis of linear system with additive time-varying delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ramakrishnan, K. ; Dept. of Electr. Eng., IIT, Kharagpur, India ; Ray, G.

In this paper, a new delay-dependent stability criterion is presented for a class of linear system with additive time varying delay elements in the state vector. By using an appropriate Lyapunov-Krasovskii functional and integral inequality lemmas, a simple delay-dependent stability criterion is proposed in LMI framework that estimates the maximum allowable bound of the time delays within which the system under consideration remains asymptotically stable. The simplicity of the criterion stems from the fact that neither any terms are ignored in the analysis while dealing with the cross product terms, nor any free-weighting matrices are introduced in the theoretical derivation to counter them. The proposed criterion is computationally attractive, and it provides less conservative results than the existing results. A numerical example with two additive delay elements is considered to test the effectiveness of the proposed method.

Published in:

Automation Science and Engineering, 2009. CASE 2009. IEEE International Conference on

Date of Conference:

22-25 Aug. 2009