By Topic

A Resonant Gate-Drive Circuit Capable of High-Frequency and High-Efficiency Operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fujita, H. ; Dept. of Electr. & Electron. Eng., Tokyo Inst. of Technol., Tokyo, Japan

This paper deals with a new resonant gate-drive circuit for power MOSFETs. The proposed gate-drive circuit is characterized by a resonant inductor connected in series with the gate terminal of the driven MOSFET. The inductor and the input capacitance of the MOSFET form a series resonant circuit, which enables to charge or discharge the gate-to-source input capacitance of the MOSFET without any electric power consumption in theory. Experimental results are shown to verify the viability of the resonant gate-drive circuit. As a result, the proposed resonant gate-drive circuit reduces its power consumption by a factor of ten, compared with a conventional one. A 360-kHz and 1-kW MOSFET inverter driven by the proposed gate-drive circuits exhibits a high efficiency more than 99%, considering the losses in the two main MOSFETs and the two resonant gate-drive circuits.

Published in:

Power Electronics, IEEE Transactions on  (Volume:25 ,  Issue: 4 )