By Topic

22.7-dB Gain - 19.7-dBm ICP_{1{\rm dB}} UWB CMOS LNA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Domenico Pepe ; Dept. of Inf. Eng., Univ. of Pisa, Pisa, Italy ; Domenico Zito

A fully differential CMOS ultrawideband low-noise amplifier (LNA) is presented. The LNA has been realized in a standard 90-nm CMOS technology and consists of a common-gate stage and two subsequent common-source stages. The common-gate input stage realizes a wideband input impedance matching to the source impedance of the receiver (i.e., the antenna), whereas the two subsequent common-source stages provide a wideband gain by exploiting RLC tanks. The measurements have exhibited a transducer gain of 22.7 dB at 5.2 GHz, a 4.9-GHz-wide B 3dB, an input reflection coefficient lower than -10.5 dB, and an input-referred 1-dB compression point of -19.7 dBm, which are in excellent agreement with the postlayout simulation results, confirming the approach validity and the design robustness.

Published in:

IEEE Transactions on Circuits and Systems II: Express Briefs  (Volume:56 ,  Issue: 9 )