By Topic

Propagation Between On-Body Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lea, A. ; Sch. of Eng. Sci., Simon Fraser Univ., Burnaby, BC, Canada ; Ping Hui ; Ollikainen, J. ; Vaughan, R.G.

The theory of propagating waves near a surface is reviewed with an eye to gain insight into the mechanisms involved, and to provide analytical-based models, for power-efficient on-body propagation. The Zenneck wave, and in particular the Norton wave, are appraised as candidate mechanisms for the propagation. For flush-mounted (ldquoband aidrdquo) antennas, desired for on-body sensors, the Norton wave is the only direct propagation mechanism between the sensors. The Norton wave fits very well to simulation results presented here, and comparisons are also made with available published physical experiments, although these measurements typically feature the optical paths of elevated, or non-flush, antennas.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:57 ,  Issue: 11 )