By Topic

Developing a Stochastic Dynamic Programming Framework for Optical Tweezer-Based Automated Particle Transport Operations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ashis Gopal Banerjee ; Dept. of Mech. Eng., Univ. of Maryland, College Park, MD, USA ; Andrew Pomerance ; Wolfgang Losert ; Satyandra K. Gupta

Automated particle transport using optical tweezers requires the use of motion planning to move the particle while avoiding collisions with randomly moving obstacles. This paper describes a stochastic dynamic programming based motion planning framework developed by modifying the discrete version of an infinite-horizon partially observable Markov decision process algorithm. Sample trajectories generated by this algorithm are presented to highlight effectiveness in crowded scenes and flexibility. The algorithm is tested using silica beads in a holographic tweezer set-up and data obtained from the physical experiments are reported to validate various aspects of the planning simulation framework. This framework is then used to evaluate the performance of the algorithm under a variety of operating conditions.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:7 ,  Issue: 2 )