By Topic

On the Dual Basis for Solving Electromagnetic Surface Integral Equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mei Song Tong ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Weng Cho Chew ; Rubin, B.J. ; Morsey, J.D.
more authors

A powerful technique for solving electromagnetic (EM) surface integral equations (SIEs) for inhomogenous objects by the method of moments (MoM) involves the well-known Rao-Wilton-Glisson (RWG) basis function to represent the electric current and, for field orthogonality and numerical stability reasons, a variation of the RWG basis known as the ntilde X RWG basis (where ntilde is a unit normal vector at the object surface) to represent the magnetic current. Though this combination provides a numerically efficient and effective solution that has been demonstrated on a variety of structures, one cannot feel entirely comfortable because of the presence of fictitious magnetic current associated with the modified basis. Chen and Wilton proposed a different, smoother basis in 1990 that avoids the fictitious line charges, but because of computational cost issues it has not been used beyond Chen's dissertation. Recently, this basis was rediscovered and has received considerable attention. Our work reexamines the dual basis, exploring issues not addressed by Chen and Wilton and showing accurate solutions for a variety of EM scattering structures.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:57 ,  Issue: 10 )