By Topic

Enhanced Sensitivity of Small-Size (With 1- \mu \hbox {m} Gate Length) Junction-Field-Effect-Transistor-Based Germanium Photodetector Using Two-Step Germanium Epitaxy by Ultrahigh Vacuum Chemical Vapor Deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

In this letter, we demonstrate a scalable (with gate length of 1 mum) Ge photodetector based on a junction field-effect-transistor (JFET) structure with high sensitivity and improved response time. To overcome the low-detection-efficiency issue of typical JFET photodetectors, a high-quality Ge epilayer, as the gate of JFET, was achieved using a novel epigrowth technique. By laser surface illumination of 3 mW on the Ge gate, an I ON/I OFF ratio up to 185 was achieved at a wavelength of 1550 nm for the first time. In addition, the device shows a temporal response time of 110 ps with a rise time of 10 ps, indicating that the scalable Ge JFET photodetector is a promising candidate to replace large-size photodiodes in future optoelectronic integrated circuits and as an image sensor integrated with a CMOS circuit for its comparable size in respect to modern MOSFETs.

Published in:

Electron Device Letters, IEEE  (Volume:30 ,  Issue: 10 )