By Topic

AWG-Based Tunable Optical Dispersion Compensator With Multiple Lens Structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ikuma, Y. ; Sch. of Integrated Design Eng., Keio Univ., Yokohama, Japan ; Tsuda, H.

We propose an arrayed-waveguide grating (AWG)-based tunable optical dispersion compensator (TODC) that uses a multiple lens structure with two lens materials. The lenses are realized by filling lens-shaped trenches in a slab waveguide with optical resins. The thermooptic effect provided by the lens materials realizes the desired dispersion tuning function. The multiple lens structure enables us to design the center dispersion and the dispersion tuning range independently. We fabricate a TODC based on a 10-ch, 10-GHz spacing AWG that uses resins with refractive indexes of 1.393 and 1.510. Its dispersion range is 0 to + 125 ps/nm. We also perform a transmission experiment using a 12.5 Gbps RZ-OOK signal. The power penalty at the bit error rate of 10-9 is less than 3 dB; and error-free transmission is confirmed after dispersion compensation.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 22 )