By Topic

The Quantum and Classical Capacitance Limits of InSb and InAs Nanowire FETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Abul Khayer ; Dept. of Electr. Eng., Univ. of California, Riverside, CA, USA ; Roger K. Lake

A comparison of nanowire FETs (NWFETs) of identical geometries but operating in two different regimes, namely, the quantum capacitance (QC) and classical capacitance (CC) regimes, is presented. n-type InSb and InAs NWFETs up to ~50 nm in diameter operate in the QC limit (QCL), and the corresponding p-type NWFETs operate in the CC limit. Drive currents at a fixed gate overdrive for the n- and p-type devices are found to be well matched. Nevertheless, the p-type devices have twice the delay times, half the intrinsic cutoff frequencies, twice the power-delay products, and four to five times the energy-delay products of the n-type devices, assuming transport is ballistic. Analytical expressions are derived for the QC, the current, the charge, the power-delay product, the energy-delay product, the gate delay time, and the cutoff frequency for a single-moded device operating in the QCL. The expressions for the power-delay product, energy-delay product, and the cutoff frequency are fundamental limits for such devices.

Published in:

IEEE Transactions on Electron Devices  (Volume:56 ,  Issue: 10 )