By Topic

Air-Gap Flux Density Distortion and Iron Losses in Anisotropic Synchronous Motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Barcaro, M. ; Dept. of Electr. Eng., Univ. of Padova, Padova, Italy ; Bianchi, N.

The anisotropy of the rotor of the synchronous reluctance motor (sometimes assisted by permanent magnets) causes a high content of flux density harmonics. These harmonics cause flux density fluctuations in the stator iron teeth, and thus iron losses. These losses increase with the motor speed and are independent of the main flux, that is, they exist even during the flux-weakening operations. An analytical model, validated by finite-element analysis, shows the dependence of flux density harmonic content on the rotor geometry. Therefore, this model is adopted to individuate the flux-barrier geometry so as to minimize the stator iron losses.

Published in:

Magnetics, IEEE Transactions on  (Volume:46 ,  Issue: 1 )