Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

The application of neural networks to myoelectric signal analysis: a preliminary study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kelly, M.F. ; Dept. of Electr. Eng., New Brunswick Univ., Fredericton, NB, Canada ; Parker, P.A. ; Scott, R.N.

Two neural network implementations are applied to myoelectric signal (MES) analysis tasks. The motivation behind this research is to explore more reliable methods of deriving control for multi-degree-of-freedom arm prostheses. A discrete Hopfield network is used to calculate the time series parameter for a moving average MES model. It is demonstrated that the Hopfield network is capable of generating the same time series parameters as those produced by the conventional sequential least-squares algorithm. Furthermore, it can be extended to applications utilizing larger amounts of data, and possibly to higher-order time series models, without significant degradation in computational efficiency. The second neural network implementation involves using a two-layer perceptron for classifying a single-site MES on the basis of two features, the first time series parameter and the signal power.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:37 ,  Issue: 3 )