By Topic

Low-power Capacitor Arrays for Charge Redistribution SAR A-D Converter in 65nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xingyuan Tong ; Microelectron. Inst., Xidian Univ. Xi''an, Xi''an, China ; Zhangming Zhu ; Yintang Yang

Through the research on charge redistribution SAR A/D converter, three energy-efficient capacitor arrays are discussed in this paper. The switching energy of the traditional architecture, charge sharing architecture, capacitor splitting architecture and two-step architecture capacitor arrays is derived and analyzed. Based on SMIC 65 nm CMOS process, 10-bit SAR A/D converters of all these architectures are designed to validate these concepts. The energy dissipation from Hspice simulation is discussed. At the smallest output code, charge sharing architecture and capacitor splitting architecture consume respectively 65.5% and 44.8% of the energy conventional architecture dissipates. At the smallest and largest output codes, two-step architecture just consumes respectively 10.4% and 23.1% of the traditional architecturepsilas dissipation.

Published in:

Circuits, Communications and Systems, 2009. PACCS '09. Pacific-Asia Conference on

Date of Conference:

16-17 May 2009