By Topic

Local Community Identification in Social Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiyang Chen ; Dept. of Comput. Sci., Univ. of Alberta, Edmonton, AB, Canada ; Osmar Zaïane ; Randy Goebel

There has been much recent research on identifying global community structure in networks. However, most existing approaches require complete information of the graph in question, which is impractical for some networks, e.g. the World Wide Web (WWW). Algorithms for local community detection have been proposed but their results usually contain many outliers. In this paper, we propose a new measure of local community structure, coupled with a two-phase algorithm that extracts all possible candidates first, and then optimizes the community hierarchy. We compare our results with previous methods on real world networks such as the co-purchase network from Amazon. Experimental results verify the feasibility and effectiveness of our approach.

Published in:

Social Network Analysis and Mining, 2009. ASONAM '09. International Conference on Advances in

Date of Conference:

20-22 July 2009