By Topic

Mining the Dynamics of Music Preferences from a Social Networking Site

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Schlitter, N. ; Fac. of Comput. Sci., Otto-v.-Guericke-Univ. Magdeburg, Magdeburg, Germany ; Falkowski, T.

In this paper we present an application of our incremental graph clustering algorithm (DENGRAPH) on a data set obtained from the music community site Last.fm. The aim of our study is to determine the music preferences of people and to observe how the taste in music changes over time. Over a period of 130 weeks, we extract for each interval user profiles of 1,800 users that represent their music listening behavior. By building and incrementally clustering a graph of similar users, we obtain groups of people with similar music preferences. We label these clusters with genres according to the user profiles of the cluster members. Due to the incremental nature of DENGRAPH we show how clusters evolve over time. Besides the growth and decrease of clusters we observe how new clusters emerge and old clusters die. Furthermore, we show the merge and split of clusters. The results of our experiments indicate that DENGRAPH is particularly useful to efficiently detect groups of similar users and to track them over time.

Published in:

Social Network Analysis and Mining, 2009. ASONAM '09. International Conference on Advances in

Date of Conference:

20-22 July 2009