By Topic

Graph Mining Framework for Finding and Visualizing Substructures Using Graph Database

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Swapnil Shrivastava ; Software Eng. Div., Centre for Dev. of Adv. Comput., Bangalore, India ; Supriya N. Pal

In the scientific and commercial domains, graph as a data structure has become increasingly important for modeling sophisticated structures especially the interactions within them. Mining the knowledge from graph data has become a major research topic in recent data mining studies. Researchers have designed several efficient algorithms for mining various substructures (subgraphs) within the graph. Several graph visualization tools and techniques exist. But there is a need to define a unified framework for finding and visualizing substructures from graph. In this paper we propose a graph mining framework that captures entities and relations between entities from different data sources. The framework further models this data as a graph and facilitates the dense substructure extraction and frequent substructure discovery in order to find substructures. It also supports knowledge visualization using graphs.

Published in:

Social Network Analysis and Mining, 2009. ASONAM '09. International Conference on Advances in

Date of Conference:

20-22 July 2009