By Topic

Chitosan-Hydroxyapatite Composite Obtained by Biomimetic Method as New Bone Substitute

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tanase, C.E. ; Dept. of Chem. Phys., Gh.Asachi Tech. Univ., Iasi, Romania ; Popa, M.I. ; Verestiuc, L.

Chitosan-Hydroxyapatite (Cs-Hap) composites were prepared through a biomimetic method by Hap precipitation from its precursors, CaCl2 and NaH2PO4, on the chitosan fibres. Materials composition and structure have been analyzed by usual analytical techniques, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). FT-IR and SEM data have shown the formation of Hap onto Cs fibers and Cs acting as glue, bonding the Hap crystals. The Cs-Hap composites porosity, from SEM data analysis, increases by increasing the content of Hap. The biodegradation of materials was tested in buffered lysozyme solution and the degraded polysaccharide was measured; the SEM data, before and after degradation, revealed that composites morphology had not appreciable changed. dasiaIn vitropsila degradation studies indicate that these composite have slighter degradation rate which is coupled to the degree of N-deacetylation, hydrophilicity and crystallinity. Swelling properties measurements in simulated body fluids have shown that the swelling ratio of composites is decreased when the content of Hap is higher. The obtained results revealed that obtained Cs-Hap composites are promising materials as bone substitute due to their adequate swelling properties and controlled degradation rate.

Published in:

Advanced Technologies for Enhanced Quality of Life, 2009. AT-EQUAL '09.

Date of Conference:

22-26 July 2009