By Topic

Modeling and Verifying Physical Properties of Security Protocols for Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schaller, P. ; ETH Zurich, Zurich, Switzerland ; Schmidt, B. ; Basin, D. ; Capkun, S.

We present a formal model for modeling and reasoning about security protocols. Our model extends standard, inductive, trace-based, symbolic approaches with a formalization of physical properties of the environment, namely communication, location, and time. In particular, communication is subject to physical constraints, for example, message transmission takes time determined by the communication medium used and the distance traveled. All agents, including intruders, are subject to these constraints and this results in a distributed intruder with restricted, but more realistic, communication capabilities than those of the standard Dolev-Yao intruder. We have formalized our model in Isabelle/HOL and used it to verify protocols for authenticated ranging, distance bounding, and broadcast authentication based on delayed key disclosure.

Published in:

Computer Security Foundations Symposium, 2009. CSF '09. 22nd IEEE

Date of Conference:

8-10 July 2009