By Topic

Critical Review of the Engelmaier Model for Solder Joint Creep Fatigue Reliability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Preeti Chauhan ; CALCE Electron. Products & Syst. Center, Univ. of Maryland, College Park, MD, USA ; Michael Osterman ; S. W. Ricky Lee ; Michael Pecht

A solder interconnect fatigue life model was developed by Werner Engelmaier in the early 1980s as an improvement upon the inelastic strain range-based Coffin-Manson model. As developed, the model provides a first-order estimate of cycles to failure for SnPb solder interconnects under power and thermal cycles. While the model has been widely adopted for SnPb solder joint reliability prediction, many issues that arise from simplifications in formulating input model parameters as well as from the complex physics of solder degradation challenge the model's ability to accurately estimate cycles to failure. Deficiencies with the model have been reported by a number of researchers. This paper reviews and summarizes the major issues with the Engelmaier model in its applicability to predict solder joint thermal fatigue life.

Published in:

IEEE Transactions on Components and Packaging Technologies  (Volume:32 ,  Issue: 3 )