By Topic

Humidity Sensitivity of Carbon Nanotube and Poly (Dimethyldiallylammonium Chloride) Composite Films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Litao Liu ; Dept. of Precision Instrum. & Mechanology, Tsinghua Univ., Beijing, China ; Xiongying Ye ; Kang Wu ; Zhaoying Zhou
more authors

This paper demonstrates a highly sensitive humidity sensor based on carbon nanotube and poly(dimethyldiallylammonium chloride) composite films. The composite film is deposited between interdigitated electrodes on a Si/SiO2 substrate through layer-by-layer self-assembly technique. The resistance stability of the composite film is effectively improved through thermal annealing, and I-V characteristic of the film exhibits a very good linear behavior. The resistance increases exponentially with relative humidity from 20% to 98%, and a much higher sensitivity in comparison with pure carbon nanotube networks is achieved. With temperature increased, the water vapor density versus RH shifts upwards, while the resistance is reduced downwards. The resistance is dependent on temperatures with a negative coefficient. The composite films with multiwalled carbon nanotubes show an adjacent sensitivity, compared with the single-walled carbon nanotube composite films. The experimental results show that the humidity sensors have a fast response and a short recovery time, and their response is reversible. A simple model is proposed to explain the change of composite film resistance with humidity. The carbon nanotubes junctions may play a more important role in the overall resistance change for water molecule absorption.

Published in:

IEEE Sensors Journal  (Volume:9 ,  Issue: 10 )