By Topic

Music Recommendation Based on Acoustic Features and User Access Patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bo Shao ; Sch. of Comput. Sci., Florida Int. Univ., Miami, FL, USA ; Dingding Wang ; Tao Li ; Mitsunori Ogihara

Music recommendation is receiving increasing attention as the music industry develops venues to deliver music over the Internet. The goal of music recommendation is to present users lists of songs that they are likely to enjoy. Collaborative-filtering and content-based recommendations are two widely used approaches that have been proposed for music recommendation. However, both approaches have their own disadvantages: collaborative-filtering methods need a large collection of user history data and content-based methods lack the ability of understanding the interests and preferences of users. To overcome these limitations, this paper presents a novel dynamic music similarity measurement strategy that utilizes both content features and user access patterns. The seamless integration of them significantly improves the music similarity measurement accuracy and performance. Based on this strategy, recommended songs are obtained by a means of label propagation over a graph representing music similarity. Experimental results on a real data set collected from demonstrate the effectiveness of the proposed approach.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:17 ,  Issue: 8 )