By Topic

Optimal Design of Flattened Gain Spectrum of Raman Amplifiers Based on Photonic Crystal Fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianhua Chang ; Coll. of Electron. & Inf. Eng., Nanjing Univ. of Inf. Sci. & Tech., Nanjing, China ; Tingting Wang ; Zaihong Tao

An efficient optimal algorithm, named SAA-PA in brief, based on the simulated annealing algorithm (SAA) and the Powell algorithm (PA) for the PCF-based Raman amplifiers (PCF-RA) design has been applied for the first time, in order to achieve the flat Raman gain characteristics. The pump spectra (wavelengths and powers) have been optimized to achieve low gain ripple (GR) over C+L band. The PCF considered to study the RA has the following parameters: Lambda = 4 mum, d/Lambda = 0.625, Sixty signals (1540-1600 nm) spaced at 1 nm are launched to the PCF of 10-km length with an input power of -10 dBm/ch. Various pump wavelengths and power distributions have been considered with the aim to reduce the gain ripple as much as possible. Simulation results show that the lowest GR of 0.72 dB with a peak gain of 8.03 dB in an 10 km ULL-PCF can be attained over C+L band. Also, it has been easily found that, when the gain and bandwidth are approximately the same, the lowest GR decreases with the addition of pump number, i.e., the GR are 1.27, 1.11, 0.85, and 0.72 dB for 3, 4, 5, and 6 backward pumps, respectively. All this shows that PCF is an appropriate candidate for high gain Raman amplifier.

Published in:

2009 Symposium on Photonics and Optoelectronics

Date of Conference:

14-16 Aug. 2009