By Topic

A New Local-Loop Particle Filter Based on the Artificial Fish Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jian Yu ; Software Coll., Shenyang Normal Univ., Shenyang, China ; Xinyu Li ; Luo Guilan

In this paper, we proposed a novel filtering method - Local-loop Particle Filter Based on the Artificial Fish Algorithm (LPF-AF) for nonlinear dynamic systems. Particle filtering algorithm has been widely used in solving nonlinear/non Gaussian filtering problems. The proposal distribution is the key issue of the particle filtering, which will greatly influence the performance of algorithm. In the proposed LPF-AF, the local searching of AF is used to regenerate sample particles, which can make the proposal distribution more closed to the poster distribution. There are mainly two steps in the proposed filter. In the first step of LPF-AF, extended kalman filter was used as proposal distribution to generate particles, then means and variances of the proposal distribution can be calculated. In the second step, some particles move to toward the particle with the biggest weights. The proposed LPF-AF algorithm was compared with other several filtering algorithms and the experimental results show that means and variances of LPF-AF are lower than other filtering algorithms.

Published in:

Photonics and Optoelectronics, 2009. SOPO 2009. Symposium on

Date of Conference:

14-16 Aug. 2009