By Topic

A hierarchical fuzzy inference method for skill evaluation of machine operators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kalevi Tervo ; Department of Automation and Systems Technology, Helsinki University of Technology, Espoo, Finland, P.O. BOX 5500, FI-02015 TKK ; Lauri Palmroth ; Aki Putkonen

In machine work, the productivity, energy efficiency, and the quality of the work depend strongly on the skills of the human operator. This paper proposes a hierarchical method for skill evaluation of human operators in machine work during their normal work. The method refines skill metrics obtained from work cycle recognition-based evaluation system proposed earlier by the authors. The proposed skill components are: machine controlling skills, control parameter tuning skills, knowledge of the work technique and strategy, and planning and decision making skills. The skill components in each task are evaluated by a dedicated fuzzy inference system, whose rule base is generated automatically. The method is utilized to evaluate skills of nine operators of a cut-to-length forest harvester.

Published in:

2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics

Date of Conference:

14-17 July 2009