By Topic

Nonlinear control for MIMO magnetic levitation system using direct decentralized neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Syuan-Yi Chen ; Dept. of Electr. Eng., Nat. Central Univ., Chungli, Taiwan ; Faa-Jeng Lin

A direct modified Elman neural networks (MENNs)-based decentralized controller is proposed to control the magnets of a nonlinear and unstable multi-input multi-output (MIMO) levitation system for the tracking of reference trajectory. First, the operating principles of a magnetic levitation system with two moving magnets are introduced. Then, due to the exact dynamic model of the MIMO magnetic levitation system is not clear, two MENNs are combined to be a direct MENN-based decentralized controller to deal with the highly nonlinear and unstable MIMO magnetic levitation system. Moreover, the connective weights of the MENNs are trained online by backpropagation (BP) methodology. Based on the direct and decentralized concepts, the computational burden is reduced and the controller design is simplified. Furthermore, the experimental results show that the proposed control scheme can control the magnets to track periodic sinusoidal reference trajectory simultaneously in different operating conditions effectively.

Published in:

Advanced Intelligent Mechatronics, 2009. AIM 2009. IEEE/ASME International Conference on

Date of Conference:

14-17 July 2009