By Topic

Active Force Control of a fluidic muscle system using Fuzzy Logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jahanabadi, H. ; Univ. Teknol. Malaysia, Skudai, Malaysia ; Mailah, M. ; Zain, Mohd Zarhamdy Md

In this paper, active force control with fuzzy logic (AFCFL) technique is applied to the control of a fluidic muscle (also known as pneumatic artificial muscle or PAM) that acts as an actuator to drive a trolley system in a laboratory setting. Since, fluidic muscle has a high tension force, high power/weight ratio, high strength, and cleanliness, ease of maintenance, low cost, compactness and cheap power source, it has caught the attention of researchers in the area of robotics. Despite of its advantageous, the presence of the inherent high nonlinearity behaviour, high hysteresis and time variance in the system has made it a challenging and interesting system for modelling and control design. The main goal of this study is to perform accurate position control of a trolley through a hardware-in-the-loop simulation (HILS) implementation so as to enhance the system performance through the AFCFL scheme. Experimental results demonstrate the effectiveness and robustness of the proposed controller compared to the conventional proportional-integral-derivative (PID) control method.

Published in:

Advanced Intelligent Mechatronics, 2009. AIM 2009. IEEE/ASME International Conference on

Date of Conference:

14-17 July 2009