By Topic

An Adaptive Algorithm for Single-Electron Device and Circuit Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Allec, N. ; Dept. of Electr. & Comput. Eng., Queen''s Univ., Kingston, ON, Canada ; Knobel, R.G. ; Li Shang

Single-electron devices have been widely used in electronics and physics research, and are believed to be one of the potential alternatives to CMOS circuits due to their small size and ultra-low power dissipation. In the recent past, three simulation methods have been used for single-electron device and circuit analysis: the Monte Carlo method, the master equation method, and SPICE using analytic models. Among these, the Monte Carlo method provides excellent accuracy, but is too slow for large-scale circuit simulation. In this work, we propose and develop an adaptive simulation technique based on the Monte Carlo method. This technique significantly improves the time efficiency while maintaining accuracy for single-electron device and circuit simulation. We have shown it is possible to reduce simulation time up to nearly 40 times and maintain an average propagation delay error of 3.4% compared to a nonadaptive Monte Carlo method.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 8 )