By Topic

Multichannel Nonnegative Matrix Factorization in Convolutive Mixtures for Audio Source Separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ozerov, A. ; CNRS LTCI, Telecom ParisTech, Paris, France ; Févotte, C.

We consider inference in a general data-driven object-based model of multichannel audio data, assumed generated as a possibly underdetermined convolutive mixture of source signals. We work in the short-time Fourier transform (STFT) domain, where convolution is routinely approximated as linear instantaneous mixing in each frequency band. Each source STFT is given a model inspired from nonnegative matrix factorization (NMF) with the Itakura-Saito divergence, which underlies a statistical model of superimposed Gaussian components. We address estimation of the mixing and source parameters using two methods. The first one consists of maximizing the exact joint likelihood of the multichannel data using an expectation-maximization (EM) algorithm. The second method consists of maximizing the sum of individual likelihoods of all channels using a multiplicative update algorithm inspired from NMF methodology. Our decomposition algorithms are applied to stereo audio source separation in various settings, covering blind and supervised separation, music and speech sources, synthetic instantaneous and convolutive mixtures, as well as professionally produced music recordings. Our EM method produces competitive results with respect to state-of-the-art as illustrated on two tasks from the international Signal Separation Evaluation Campaign (SiSEC 2008).

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:18 ,  Issue: 3 )