By Topic

Drive Train Optimization for Industrial Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marcus Pettersson ; Dept. of Manage. & Eng., Linkoping Univ., Linkoping, Sweden ; Johan Ölvander

This paper presents an optimization strategy for finding the trade-offs between cost, lifetime, and performance when designing the drive train, i.e., gearboxes and electric motors, for new robot concepts. The method is illustrated with an example in which the drive trains of two principal axes on a six-axis serial manipulator are designed. Drive train design for industrial robots is a complex task that requires a concurrent design approach. For instance, the mass properties of one motor affect the torque requirements for another, and the method needs to consider several drive trains simultaneously. Since the trajectory has a large impact on the load on the actuators when running a robot, the method also includes the trajectory generation itself in the design loop. It is shown how the design problem can be formalized as an optimization problem. A non-gradient-based optimization algorithm that can handle mixed variable problems is used to solve the highly nonlinear problem. The outcome from an industrial point of view is minimization of cost and the simulataneous balancing of the trade-off between lifetime and performance.

Published in:

IEEE Transactions on Robotics  (Volume:25 ,  Issue: 6 )