Cart (Loading....) | Create Account
Close category search window
 

Time-Domain Spherical Near-Field Antenna Measurement System Employing a Switched Continuous-Wave Hardware Gating Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Blech, M.D. ; Inst. fur Hochfrequenztech., Univ. Stuttgart, Stuttgart, Germany ; Leibfritz, M.M. ; Hellinger, R. ; Geier, D.
more authors

A time-domain spherical near-field antenna measurement system capable of gating out erroneous signal components, which arise due to multipath propagation in nonideal anechoic chambers, is presented. The developed hardware (HW) gating technique evaluates a switched sinusoidal signal, which is synthesized by an application-specific pulse generator and acquired by either a commercial real-time digitizing oscilloscope or an application-specific equivalent-time sampling receiver developed for this particular purpose. The low-cost measurement system has been optimized for acquisition speed, dynamic range, and resolution. Its operating frequency range covers 1.5-8 GHz, and it is applicable to antennas exhibiting a typical 3-dB bandwidth in excess of 400 MHz. Test measurements of an omnidirectional and a directional antenna, respectively, have been carried out to demonstrate the performance of the novel HW gating technique. It is shown that the HW gating technique can significantly improve the absolute average deviation of the erroneous 3-D far-field pattern.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:59 ,  Issue: 2 )

Date of Publication:

Feb. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.