By Topic

Analysis of Negative-Saliency Permanent-Magnet Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moncada, R.H. ; Dept. of Electr. Eng., Univ. of Concepcion, Concepcion, Chile ; Tapia, J.A. ; Jahns, T.M.

In this paper, a negative-saliency permanent-magnet (PM) synchronous machine analysis is presented. This particular saliency feature is achieved by replacing a portion of the magnet material by a soft iron piece over the rotor pole. In this manner, the d-axis inductance is increased, whereas the q-axis inductance is almost not affected, leading to the condition that Ld is higher than Lq (negative saliency) corresponding to the inverse condition of typical PM machines. An expression for the optimum pole configuration is derived. It is shown that, with appropriate control of the stator current based on the machine's saliency, the unfavorable effects of magnet reduction on torque production can be compensated. It is also shown that the machine saliency affects the location of the operating points when it operates under vector control. Finally, the theoretical analysis is validated with experimental results obtained from a prototype axial-flux PM machine that exhibits negative saliency.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 1 )