By Topic

Optimal Torque Control of Synchronous Machines Based on Finite-Element Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
de Kock, H.W. ; Optimal Energy, Cape Town, South Africa ; Rix, A.J. ; Kamper, M.J.

Synchronous machines that are optimally designed using finite-element (FE) software, and control of such machines using powerful digital signal processors (DSPs), are commonplace today. With field-orientated control, the maximum-torque-per-ampere control strategy for unsaturated voltage conditions (below the base speed) is well known; the field-weakening strategy, however, could be rather complicated. In this paper, a straightforward torque control strategy for the entire speed range is proposed and demonstrated. Practical implementation of the method is very simple since the calculations are done offline in an automated process and are therefore removed from the load of the DSP. The process relies on machine-specific data from FE analysis and therefore includes nonlinear effects such as saturation and cross coupling. Simulation and practical results for a permanent-magnet and a reluctance synchronous machine show that the torque is controlled effectively in the entire speed range using this generic method.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 1 )