Cart (Loading....) | Create Account
Close category search window
 

Power Allocation in Orthogonal Wireless Relay Networks With Partial Channel State Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pham, T.T. ; Dept. of Electr. & Comput. Eng., Univ. of Saskatchewan, Saskatoon, SK, Canada ; Nguyen, H.H. ; Tuan, H.D.

Wireless amplify-and-forward relay networks in which the source communicates with the relays and destination in the first phase and the relays forward signals to the destination in the second phase over orthogonal and uncorrelated Rayleigh fading channels are considered. Convex programming is used to obtain optimal and approximately optimal power allocation schemes to maximize the average signal-to-noise ratios at the output of the receiver filters under two different assumptions of partial channel state information (CSI). Analysis and simulation results demonstrate the superiority of the proposed power allocation schemes over the equal-power allocation scheme. Performance comparison to the extreme cases of i) direct transmission between the source and destination and ii) having full CSI is made to illustrate the gain and loss, respectively, of the proposed schemes. The impact of power allocation between the source and relays is also investigated by computer simulation.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 2 )

Date of Publication:

Feb. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.