By Topic

On integrated model for image filtering and segmenting based on Structure Statistic of Decomposable Markov Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jian-nong Cao ; Coll. of Earth Sci. & Resources, Chang''an Univ., Xi''an, China ; Yong Fang

The removing of image noise, which is abnormity of pixels, is image filtering, and the key of problem is ascertaining the location of pixels with abnormity gray-level. The segmenting pixels with no-similar gray-level are image segmentation. Obviously, the abnormity gray-level is equal to no-similar gray-level in measurement of pixels. So a model integrated (namely Decomposable Markov Networks, for short, DMN), which not only can segment but also filter image, is put forward. The microcosmic configurations of DMN are obtained by computing pixels attribute (namely gray-level, texture and so on), and can firstly identify normal (namely including no-similar or similar gray-level) or abnormity gray-level (namely possible noise). The abilities of DMN identifying are realized by linking intension of networks, which derive a new uncertain complication (namely uncertain relations of microcosmic link) that is leaded by natural random factors of image data spatial distributing. So the macroscopical Structure Statistic of Decomposable Markov Network (SSDMN) can identify statistical abnormity gray-level (namely including no-similar [possible noise] and similar gray-level), and then filtering and segmenting image is implemented by a model integrated. Obviously, the DMN is facility of integration, and settles a difficult problem, which is uniting description of pixels numerical value and its spatial locations.

Published in:

Computer Science & Education, 2009. ICCSE '09. 4th International Conference on

Date of Conference:

25-28 July 2009