Cart (Loading....) | Create Account
Close category search window
 

An improved ID3 decision tree algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen Jin ; Sch. of Inf. Sci. & Technol., Xiamen Univ., Xiamen, China ; Luo De-lin ; Mu Fen-xiang

Decision tree is an important method for both induction research and data mining, which is mainly used for model classification and prediction. ID3 algorithm is the most widely used algorithm in the decision tree so far. Through illustrating on the basic ideas of decision tree in data mining, in this paper, the shortcoming of ID3's inclining to choose attributes with many values is discussed, and then a new decision tree algorithm combining ID3 and association function(AF) is presented. The experiment results show that the proposed algorithm can overcome ID3's shortcoming effectively and get more reasonable and effective rules.

Published in:

Computer Science & Education, 2009. ICCSE '09. 4th International Conference on

Date of Conference:

25-28 July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.