By Topic

Information fusion Wiener filter for the multisensor multichannel ARMA signals with time-delayed measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sun, X.-J. ; Dept. of Autom., Heilongjiang Univ., Harbin, China ; Deng, Z.-L.

For the multisensor multichannel autoregressive moving average (ARMA) signals with time-delayed measurements, a measurement transformation approach is presented, which transforms the equivalent state space model with measurement delays into the state space model without measurement delays, and then using the Kalman filtering method, under the linear minimum variance optimal weighted fusion rules, three distributed optimal fusion Wiener filters weighted by matrices, diagonal matrices and scalars are presented, respectively, which can handle the fused filtering, prediction and smoothing problems. They are locally optimal and globally suboptimal. The accuracy of the fuser is higher than that of each local signal estimator. In order to compute the optimal weights, the formulae of computing the cross-covariances among local signal estimation errors are given. A Monte Carlo simulation example for the three-sensor target tracking system with time-delayed measurements shows their effectiveness.

Published in:

Signal Processing, IET  (Volume:3 ,  Issue: 5 )