By Topic

Efficient SAT solving for non-clausal formulas using DPLL, graphs, and watched cuts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jain, H. ; Verification Group, Synopsys, Inc., Mountain View, CA, USA ; Clarke, E.M.

Boolean satisfiability (SAT) solvers are used heavily in hardware and software verification tools for checking satisfiability of Boolean formulas. Most state-of-the-art SAT solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm and require the input formula to be in conjunctive normal form (CNF). We present a new SAT solver that operates on the negation normal form (NNF) of the given Boolean formulas/circuits. The NNF of a formula is usually more succinct than the CNF of the formula in terms of the number of variables. Our algorithm applies the DPLL algorithm to the graph-based representations of NNF formulas. We adapt the idea of the two-watched-literal scheme from CNF SAT solvers in order to efficiently carry out Boolean Constraint Propagation (BCP), a key task in the DPLL algorithm. We evaluate the new solver on a large collection of Boolean circuit benchmarks obtained from formal verification problems. The new solver outperforms the top solvers of the SAT 2007 competition and SAT-Race 2008 in terms of run time on a large majority of the benchmarks.

Published in:

Design Automation Conference, 2009. DAC '09. 46th ACM/IEEE

Date of Conference:

26-31 July 2009