By Topic

Combining classifiers through fuzzy cognitive maps in natural images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
G. Pajares ; Departamento de Ingenier¿¿a del Software e Inteligencia Artificial, Facultad Informa¿ tica, Universidad Complutense, 28040 Madrid, Spain E-mail: pajares@fdi.ucm.es ; M. Guijarro ; P. J. Herrera ; A. Ribeiro

A new automatic hybrid classifier for natural images by combining two base classifiers through the fuzzy cognitive maps (FCMs) approach is presented in this study. The base classifiers used are fuzzy clustering (FC) and the parametric Bayesian (BP) method. During the training phase, different partitions are established until a valid partition is found. Partitioning and validation are two automatic processes based on validation measurements. From a valid partition, the parameters of both classifiers are estimated. During the classification phase, FC provides for each pixel the supports (membership degrees) that determine which cluster the pixel belongs to. These supports are punished or rewarded based on the supports (probabilities) provided by BP. This is achieved through the FCM approach, which combines the different supports. The automatic strategy and the combined strategy under the FCM framework make up the main findings of this study. The analysis of the results shows that the performance of the proposed method is superior to other hybrid methods and more accurate than the single usage of existing base classifiers.

Published in:

IET Computer Vision  (Volume:3 ,  Issue: 3 )