By Topic

A stochastic geometry approach to coexistence in heterogeneous wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pinto, P.C. ; LIDS, Massachusetts Inst. of Technol., Cambridge, MA, USA ; Giorgetti, A. ; Win, M.Z. ; Chiani, M.

With the increasing proliferation of different communication devices sharing the same spectrum, it is critical to understand the impact of interference in heterogeneous wireless networks. In this paper, we put forth a mathematical model for coexistence in networks composed of both narrowband (NB) and ultrawideband (UWB) wireless nodes, based on fundamental tools from stochastic geometry. Our model considers that the interferers are spatially scattered according to a Poisson field, and are operating asynchronously in a wireless environment. We first determine the statistical distribution of the aggregate interference for both cases of NB and UWB emitters. We then provide error probability expressions for two dual configurations: 1) a NB victim link subject to the aggregate UWB interference, and 2) a UWB victim link subject to the aggregate NB interference. The results show that while the impact of a single interferer on a link is often negligible due to restrictions on the transmitted power, the aggregate effect of multiple interferers may cause significant degradation. Therefore, aggregate interference must be considered to ensure coexistence in heterogeneous networks. The proposed analytical framework shows good agreement with physical-level simulations of the system.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:27 ,  Issue: 7 )