Cart (Loading....) | Create Account
Close category search window

Opportunistic routing in wireless ad hoc networks: upper bounds for the packet propagation speed

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jacquet, P. ; INRIA, Le Chesnay, France ; Mans, B. ; Muhlethaler, P. ; Rodolakis, G.

Classical routing strategies for mobile ad hoc networks operate in a hop by hop "push mode" basis: packets are forwarded on pre-determined relay nodes, according to previously and independently established link performance metrics (e.g., using hellos or route discovery messages). Conversely, recent research has highlighted the interest in developing opportunistic routing schemes, operating in "pull mode": the next relay can be selected dynamically for each packet and each hop, on the basis of the actual network performance. This allows each packet to take advantage of the local pattern of transmissions at any time. The objective of such opportunistic routing schemes is to minimize the end-to-end delay required to carry a packet from the source to the destination. In this paper, we provide upper bounds on the packet propagation speed for opportunistic routing, in a realistic network model where link conditions are variable. We analyze the performance of various opportunistic routing strategies and we compare them with classical routing schemes. The analysis and the simulations show that opportunistic routing performs significantly better. We also investigate the effects of mobility and of random fading. Finally, we present numerical simulations that confirm the accuracy of our bounds.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:27 ,  Issue: 7 )

Date of Publication:

September 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.