By Topic

Comparison of Orientation Filter Algorithms for Realtime Wireless Inertial Posture Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Young, A.D. ; Inst. for Comput. Syst. Archit., Univ. of Edinburgh, Edinburgh, UK

Advances in the miniaturisation of inertial sensors have allowed the design of compact wireless inertial orientation trackers. Such devices require data fusion algorithms to process sensor data into estimated orientations. This paper examines the problem of inertial sensor data fusion and compares two alternative methods for orientation estimation: complementary filtering and Kalman filtering. Experiments are presented to assess the performance and accuracy of the resulting filters. The complementary filter structure is demonstrated to require up to nine times less execution time, while maintaining better accuracy across different movement scenarios, than the Kalman filter structure.

Published in:

Wearable and Implantable Body Sensor Networks, 2009. BSN 2009. Sixth International Workshop on

Date of Conference:

3-5 June 2009