By Topic

Classification of the Core Modes of Hollow-Core Photonic-Bandgap Fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Aghaie, K.Z. ; Edward L. Ginzton Lab., Stanford Univ., Stanford, CA, USA ; Dangui, V. ; Digonnet, M.J.F. ; Shanhui Fan
more authors

Using a new full-vectorial finite-difference mode solver utilizing a hexagonal Yee's cell, we calculated the dispersion diagram of a slightly multimode (16 modes) air-core photonic-bandgap fiber (PBF) and the electric-field profiles of all of its core modes. Careful comparison shows striking similarities between these properties and those of the hybrid modes of a conventional step-index fiber, in terms of the modes' field profiles, the modes' degeneracy, the order in which the modes mode cut off in the wavelength space, and the maximum number of modes. Based on these similarities, we propose for the first time a systematic nomenclature for the modes of a PBF, namely hybrid HE and EH modes and of quasi-TE and quasi-TM modes. Other small but relevant similarities and differences between the modes of these two types of fibers are also discussed.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:45 ,  Issue: 9 )