Cart (Loading....) | Create Account
Close category search window

A Low Power Pipelined ADC Using Capacitor and Opamp Sharing Technique With a Scheme to Cancel the Effect of Signal Dependent Kickback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

A new capacitor and opamp sharing technique that enables a very efficient low-power pipeline ADC design is proposed. A new method to cancel the effect of signal-dependent kick-back or memory effect in capacitors in the absence of a sample and hold is also presented. Fabricated in a 0.18 ¿m CMOS process, the prototype 11-bit pipelined ADC occupies 2.2 mm2 of active die area and achieves 66.7 dB SFDR and 53.2 dB SNDR when a 1 MHz input signal is digitized at 80 MS/s. The SFDR and SNDR are unchanged for a 50 MHz input signal. The prototype ADC consumes 36 mW at 1.8 V supply, of which the analog portion consumes 24 mW.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:44 ,  Issue: 9 )

Date of Publication:

Sept. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.