Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Real-Time Detection and Tracking for Augmented Reality on Mobile Phones

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wagner, Daniel ; Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria ; Reitmayr, Gerhard ; Mulloni, Alessandro ; Drummond, Tom
more authors

In this paper, we present three techniques for 6DOF natural feature tracking in real time on mobile phones. We achieve interactive frame rates of up to 30 Hz for natural feature tracking from textured planar targets on current generation phones. We use an approach based on heavily modified state-of-the-art feature descriptors, namely SIFT and Ferns plus a template-matching-based tracker. While SIFT is known to be a strong, but computationally expensive feature descriptor, Ferns classification is fast, but requires large amounts of memory. This renders both original designs unsuitable for mobile phones. We give detailed descriptions on how we modified both approaches to make them suitable for mobile phones. The template-based tracker further increases the performance and robustness of the SIFT- and Ferns-based approaches. We present evaluations on robustness and performance and discuss their appropriateness for Augmented Reality applications.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:16 ,  Issue: 3 )