Cart (Loading....) | Create Account
Close category search window
 

Correlation-Based Traffic Analysis Attacks on Anonymity Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ye Zhu ; Dept. of Electr. & Comput. Eng., Cleveland State Univ., Cleveland, OH, USA ; Xinwen Fu ; Graham, B. ; Bettati, R.
more authors

In this paper, we address attacks that exploit the timing behavior of TCP and other protocols and applications in low-latency anonymity networks. Mixes have been used in many anonymous communication systems and are supposed to provide countermeasures to defeat traffic analysis attacks. In this paper, we focus on a particular class of traffic analysis attacks, flow-correlation attacks, by which an adversary attempts to analyze the network traffic and correlate the traffic of a flow over an input link with that over an output link. Two classes of correlation methods are considered, namely time-domain methods and frequency-domain methods. Based on our threat model and known strategies in existing mix networks, we perform extensive experiments to analyze the performance of mixes. We find that all but a few batching strategies fail against flow-correlation attacks, allowing the adversary to either identify ingress and egress points of a flow or to reconstruct the path used by the flow. Counterintuitively, some batching strategies are actually detrimental against attacks. The empirical results provided in this paper give an indication to designers of Mix networks about appropriate configurations and mechanisms to be used to counter flow-correlation attacks.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:21 ,  Issue: 7 )

Date of Publication:

July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.