By Topic

Sentence Correction Incorporating Relative Position and Parse Template Language Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chung-Hsien Wu ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Chao-Hong Liu ; Matthew Harris ; Liang-Chih Yu

Sentence correction has been an important emerging issue in computer-assisted language learning. However, existing techniques based on grammar rules or statistical machine translation are still not robust enough to tackle the common errors in sentences produced by second language learners. In this paper, a relative position language model and a parse template language model are proposed to complement traditional language modeling techniques in addressing this problem. A corpus of erroneous English-Chinese language transfer sentences along with their corrected counterparts is created and manually judged by human annotators. Experimental results show that compared to a state-of-the-art phrase-based statistical machine translation system, the error correction performance of the proposed approach achieves a significant improvement using human evaluation.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:18 ,  Issue: 6 )