By Topic

An Optical Flow-Based Approach to Robust Face Recognition Under Expression Variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chao-Kuei Hsieh ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Shang-Hong Lai ; Yung-Chang Chen

Face recognition is one of the most intensively studied topics in computer vision and pattern recognition, but few are focused on how to robustly recognize faces with expressions under the restriction of one single training sample per class. A constrained optical flow algorithm, which combines the advantages of the unambiguous correspondence of feature point labeling and the flexible representation of optical flow computation, has been developed for face recognition from expressional face images. In this paper, we propose an integrated face recognition system that is robust against facial expressions by combining information from the computed intraperson optical flow and the synthesized face image in a probabilistic framework. Our experimental results show that the proposed system improves the accuracy of face recognition from expressional face images.

Published in:

IEEE Transactions on Image Processing  (Volume:19 ,  Issue: 1 )
IEEE Biometrics Compendium
IEEE RFIC Virtual Journal
IEEE RFID Virtual Journal