Cart (Loading....) | Create Account
Close category search window
 

An Optical Flow-Based Approach to Robust Face Recognition Under Expression Variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chao-Kuei Hsieh ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Shang-Hong Lai ; Yung-Chang Chen

Face recognition is one of the most intensively studied topics in computer vision and pattern recognition, but few are focused on how to robustly recognize faces with expressions under the restriction of one single training sample per class. A constrained optical flow algorithm, which combines the advantages of the unambiguous correspondence of feature point labeling and the flexible representation of optical flow computation, has been developed for face recognition from expressional face images. In this paper, we propose an integrated face recognition system that is robust against facial expressions by combining information from the computed intraperson optical flow and the synthesized face image in a probabilistic framework. Our experimental results show that the proposed system improves the accuracy of face recognition from expressional face images.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 1 )
Biometrics Compendium, IEEE

Date of Publication:

Jan. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.