Cart (Loading....) | Create Account
Close category search window
 

Quadratic Differential and Integration Technique in V^{2} Control Buck Converter With Small ESR Capacitor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu-Huei Lee ; Dept. of Electr. & Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Shih-Jung Wang ; Ke-Horng Chen

This paper proposes a quadratic differential and integration (QDI) technique for the design of V 2 control buck converters with small equivalent series resistance (ESR) of the output capacitor. The QDI technique, which eliminates the use of large ESR in the V 2 control structure, achieves the fast transient response with the small output voltage variation in transient period. Besides, the precise sensing signal is derived from the QDI circuit without the unwilling ESR-related distortion. Moreover, the loop analysis demonstrates that the proposed QDI circuit and the proportional and integral compensator can generate the compensation zero pair to stabilize the system. Experimental results show that the output voltage has small voltage ripple opposite to the conventional V 2 control. In load transient period, the overshoot/undershoot voltage is smaller than 40 mV when output voltage is 2 V, and the transient recovery time inheriting the advantage of V 2 control is shorter than 9 ??s with the load step from 100 to 400 mA and vice versa. The highest full chip power conversion efficiency is about 93%.

Published in:

Power Electronics, IEEE Transactions on  (Volume:25 ,  Issue: 4 )

Date of Publication:

April 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.